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Abstract—This work investigates energy-related controlla-
bility of composite complex networks constructed by factor
networks via Cartesian graph product. Particularly, the con-
sidered factor networks are leader-follower signed networks
with neighbor-based Laplacian dynamics, adopting positive and
negative edges to capture cooperative and competitive inter-
actions among network units. Instead of considering classical
controllability, energy-related metrics of composite networks
capturing system performance, such as average controllabil-
ity and volumetric control energy, are characterized through
their corresponding factor networks. It is revealed that the
eigenvalues and eigenvector matrices of factor systems can be
used to characterize energy-related controllability of composite
networks.

I. INTRODUCTION

Complex networks can effectively model a variety of
natural and man-made systems. Brain networks, metabolic
networks, and biological immune networks are typical ap-
plications of the complex networks in nature, while multi-
agent systems, power networks, and transportation networks
are instances of modern engineering systems. Owing to
tremendous application potential, growing research has been
devoted to investigating the structural and functional proper-
ties of complex networks. From the viewpoint of advancing
design and control of complex networks, properties that are
of particular interest to us are the controllability and energy-
related performance of complex networks.

This work focuses on composite complex networks, i.e.,
networked systems composed of factor systems. Such net-
worked systems are widely seen in biological networks and
power system modeling [1] [2]. It has been observed that
many complex systems can be constructed and analyzed
through simple subsystems (i.e., factors), where core prop-
erties of factors are preserved in the composite system. For
example, controllability and observability of factor systems
are preserved under series-parallel connections [3]. Stability
of composite feedback systems can be analyzed based on
its factor systems via small-gain theorem and composite
Lyapunov functions [4]. Recently, graph products have been
explored to construct and reveal structural and functional
relationships between factor systems and the associated
composite system. Cartesian product is one of the graph
products used to obtain a composite network from simple
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factor networks. In [5]–[8], classical controllability and ob-
servability of a composite network were characterized based
on its factor networks. In [9], the verification and prediction
of the structural balance of signed networks were studied via
Cartesian product. In a recent work [10], generalized graph
product, including Cartesian, direct, and strong product, was
utilized to reveal spectral and controllability properties of
composite systems.

Different from previous works [11] and [12], the presented
work characterizes the energy-related controllability of com-
posite complex networks. In particular, we consider a class of
composite networks constructed from simple factor networks
via Cartesian product. For each factor network, the network
units are classified as either leaders or followers interacting
via neighbor-based Laplacian feedback. The factor network
allows positive and negative edges to capture cooperative
and competitive interactions among network units. Due to
the graph product, the resulting composite network is a
signed leader-follower network. The goal is to investigate the
energy-related controllability of composite networks. Since
direct analysis over a large-scale composite network can be
challenging, this work focuses on leveraging graph product
approaches to explore how the energy-related controllability
of the composite network can be inferred from its factor
systems.

The contributions of this work are multi-fold. First, this
work characterizes energy-related controllability of complex
composite networks via graph product approaches. A crucial
benefit of using graph product is that the global properties,
such as average controllability and volumetric control energy,
of the composite networks can be inferred from its local
factor graphs. This work is closely related to [5], where
classical network controllability was investigated via Carte-
sian graph product to provide conditions under which the
network is controllable via external inputs. Different from
[5], the presented work focuses on characterizing energy-
related measures of network controllability. It is revealed that
the eigenvalues and eigenvector matrices of factor systems
can be used to characterize energy-related controllability
of composite networks. In addition, the presented work
considers signed networks with Laplacian dynamics. Signed
networks can model a large class of networks with coopera-
tive and competitive interactions among network units, such
as social networks and resilient networks [13]. Therefore,
the developed energy-related characterizations are not only
applicable to unsigned networks (i.e., cooperative networks
with non-negative edge weights), but also to competitive
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Figure 1. Factor graphs (a) and (b), and their product graph (c) G1 � G2.

networks with possible antagonistic interactions.

II. PRELIMINARIES

A. Cartesian Product

Complex networks can be synthesized from a set of
smaller size factor graphs via graph product [14]. In this
section, Cartesian graph product is introduced, which will
be used as a main tool to characterize energy-related con-
trollability of complex networks in the subsequent analysis.
Consider two undirected graphs G1 = (V1, E1,A1) and
G2 = (V2, E2,A2). In G1, V1 =

{
v11 , . . . v

1
n

}
represents the

set of n nodes, E1 = V1 × V1 represents the edge set, and
A1 =

[
a1ij
]
∈ Rn×n is the adjacency matrix with a1ij 6= 0

if
(
v1i , v

1
j

)
∈ E1 and a1ij = 0 otherwise. The graph G2 is

defined similarly with V2 =
{
v21 , . . . v

2
m

}
, E2 = V2×V2, and

A2 =
[
a2ij
]
∈ Rm×m. Denoted by G = (V, E ,A) = G1 �G2

the composite graph constructed by the Cartesian product of
two factor graphs G1 and G2, where � denotes the Cartesian
product. The Cartesian product of G1 and G2 satisfies the con-
dition that an edge

((
v1i , v

2
p

)
,
(
v1j , v

2
q

))
∈ E exists if and only

if either
(
v1i , v

1
j

)
∈ E1 and v2p = v2q , or

(
v2p, v

2
q

)
∈ E2 and

v1i = v1j . The non-zero entry a((i,p),(j,q)) in A ∈ Rmn×mn

corresponding to the edge
((
v1i , v

2
p

)
,
(
v1j , v

2
q

))
in G is de-

fined as
a((i,p),(j,q)) = δpqa

1
ij + δija

2
pq,

where δuv = 1 if u = v and δuv = 0 otherwise, and a1ij and
a2pq are entries in A1 and A2 corresponding to

(
v1i , v

1
j

)
and(

v2p, v
2
q

)
, respectively.

An example of Cartesian product is illustrated in Fig.
1. Note that the Cartesian product is commutative and
associative, i.e., G1 � G2 and G2 � G1 are isomorphic, and
(G1 � G2) � G3 and G1 � (G2 � G3) are isomorphic for any
factor graphs G1, G2, G3.

B. Kronecker Product and Sum

Consider two matrices A1 ∈ Rn×n and A2 ∈ Rm×m.
The Kronecker product of A1 and A2 is denoted by A1 ⊗
A2 ∈ Rnm×nm. Further, the Kronecker sum of A1 and A2 is
defined as A1⊕A2 = A1⊗Im+In⊗A2, where Iu is a u×u
identity matrix. The Kronecker product has the following

properties: (A1 ⊗A2) (A3 ⊗A4) = (A1A3) ⊗ (A2A4) and
eA1⊕A2 = eA1 ⊗ eA2 . The spectrum of matrix A is denoted
as eig (A), i.e., the set of eigenvalues of A. More detailed
treatment of Kronecker product and sum can be found in
[15].

III. PROBLEM FORMULATION

A. Leader-Follower Signed Factor Network

Consider a complex network represented by an undirected
signed graph G = (V, E ,A), where the node set V =
{v1, . . . , vn} and the edge set E ⊂ V × V represent the
network units and their interactions, respectively. The inter-
actions are captured by the adjacency matrix A = [aij ] ∈
Rn×n, where aij 6= 0 if (vi, vj) ∈ E and aij = 0 otherwise.
No self-loop is considered, i.e., aii = 0 ∀i = 1, . . . , n.
Different from many existing results considering exclusively
non-negative aij (i.e., an unsigned graph), this work adopts
aij ∈ {±1}, allowing the signed edge to capture both cooper-
ative and competitive interactions between network units. Let
di =

∑
j∈Ni

|aij |, where Ni = {vj | (vi, vj) ∈ E} denotes
the neighbor set of vi and |aij | denotes the absolute value of
aij . The graph Laplacian of G is defined as L (G) , D−A,
where the in-degree matrix D , diag {d1, . . . , dn} is a diag-
onal matrix. Since G is undirected, the graph Laplacian L (G)
is symmetric. Note that, when considering signed graphs,
the graph Laplacian L (G) may have negative off-diagonal
entries and its row/column sums are not necessarily zero,
which indicates that zero is no longer a default eigenvalue
as in the case of unsigned graphs.

Let x (t) ∈ Rn denote the stacked system states, where
the ith entry represents the state of node vi. Consider a set
K = {vl1 , . . . , vlm} ⊆ V of nodes endowed with external
control inputs (i.e., the leaders), where li, i = 1, . . .m,
indicates the leader’s index. Suppose the system states evolve
over the signed graph G according to the following Laplacian
dynamics,

ẋ (t) = −L (G)x (t) +Bu (t) , (1)

where the graph Laplacian L (G) indicates that each node
updates its state by taking into account the states of its
neighboring nodes, u (t) ∈ Rm is the external input, and
B =

[
el1 · · · elm

]
∈ Rn×m is the input matrix with

basis vector1 ei ∈ Rn, i = l1, . . . , lm, indicating the leaders
are endowed with external controls. For notational simplicity,
(L, B) will be used throughout this work to represent the
dynamics in (1).

B. Control Energy Metrics

The leader-follower system (L, B) can be controllable
with appropriate selection of leaders in G (i.e., an appropriate
design of B). Most existing results focus on designing B to
ensure classical network controllability, such that the system
state can be driven from an initial state x (0) ∈ Rn to any

1A basis vector ei ∈ Rn has zero entries except for the ith entry being
one.
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target state xt ∈ Rn by an external input u (t). The total
energy required in network control over a time interval [0, t]
can be quantified as

E (t) =

ˆ t

0

‖u (τ)‖2 dτ. (2)

Assuming the initial state x (0) = 0 and the optimal control
u (t) in [16], the minimum control energy required to drive
the system (L, B) from x (0) to xf is

E (t) = xTfW−1 (t)xf , (3)

where

W (t) =

ˆ t

0

e−LτBBT e−L
T τdτ

is the controllability Gramian. In this work we focus on the
infinite horizon case, i.e., t→∞, due to the consideration of
asymptotic or exponential convergence/stability of dynamic
systems.

Since the controllability Gramian provides an energy-
related measure of network control, various metrics have
been developed based on W . Typical control energy metrics
include the worst case control energy, average controllability
tr (W), volumetric control energy log det (W), and average
control energy tr

(
W−1

)
[17]. Based on the controllability

Gramian, the above metrics provide energy-related measures
of network controllability. Such measures are referred to as
energy-related controllability in this work and the subsequent
effort will focus on characterizing the energy-related control-
lability of composite complex networks, mainly on average
controllability and volumetric control energy.

C. Composite Complex System

This section shows how the leader-follower factor net-
works can be synthesized to represent a composite complex
system. Consider a set of s leader-follower systems (Li, Bi)
evolving over factor graphs Gi, i = 1, . . . , s, respectively.
According to (1), the dynamics of the ith factor system is

ẋi (t) = −Lixi (t) +Biui (t) , (4)

where xi (t) ∈ Rni is the system state, Li =
L (Gi)∈ Rni×ni represents the associated graph Laplacian
of Gi, Bi∈ Rni×mi represents the input matrix encoding the
leaders, and ui (t) ∈ Rmi is the external input.

Based on the introduced graph product in Sect. II-A,
let G =

∏
� Gi be the composite graph constructed from

the factor graphs Gi via Cartesian product, i = 1, . . . , s.
Provided that each Gi evolves according to (4), the composite
dynamics (L, B) over G can be written as

ẋ (t) = −L

(∏
�

Gi

)
x (t) +

(∏
⊗
Bi

)
u (t)

= −L (G)x (t) +Bu (t) ,

(5)

where x (t) ∈ R
∏s

i=1 ni is the system state,
L∈ R

∏s
i=1 ni×

∏s
i=1 ni is the graph Laplacian of G,

B∈ R
∏s

i=1 ni×
∏s

i=1mi represents the input matrix, and

u (t) ∈ R
∏s

i=1mi is the external input. The composite
system (L, B) evolves over the composite graph G with
B encoding the leaders inherited from Gi, i = 1, . . . , s.
Specifically, given a leader set Ki in Gi, if Bi = B (Ki)
denotes the input matrix generated from Ki, then the input
matrix B of G can be written as B =

∏
⊗B (Ki) = B (K),

where K =
∏
×Ki represents the set of leaders in G [5].

Direct analysis of the energy-related controllability of a
composite network can be challenging, especially when the
composite network is of large size. Hence, the objective
is to characterize the energy-related controllability of the
composite system by inferring from its factor systems, taking
advantage of the smaller size of the factor systems.

The subsequent development focuses on a composite sys-
tem (L (G) , B) constructed by the Cartesian product of two
factor systems (L (G1) , B1) and (L (G2) , B2), where G1
and G2 are undirected signed graphs with n and m nodes,
respectively. The case of two factor systems is adopted
for the simplicity of presentation and is not restrictive,
since a general composite system with many factor systems
can be realized via sequential composition. In addition, the
assumption that a complex network can be decomposed into
factor system is also a mild assumption, since any graph has
a prime factor decomposition [5].

IV. ENERGY-RELATED CONTROLLABILITY OF
CARTESIAN PRODUCT GRAPH

This section focuses on the characterizations of energy-
related controllability of composite networks that are con-
structed via Cartesian product. To better explain the idea, we
start from the case that each factor system contains a single
leader. Specifically, consider two factor systems (L (G1) , b1)
and (L (G2) , b2) with b1 = el1 and b2 = el2 , where the
basis vectors el1 and el2 indicate that vl1 and vl2 are the
leaders in G1 and G2, respectively, and l1 ∈ {1, . . . , n} and
l2 ∈ {1, . . . ,m}. By Cartesian product, the composite graph
is constructed as G = G1�G2. Since graph Laplacians belong
to the family of symmetry preserving representations2, as
proved in [5], L (G1 � G2) = L (G1) ⊕ L (G2). Hence, the
dynamics of the composite system (L, bl) can be written as

ẋ (t) = −Lx (t) + blu (t) (6)
= − (L1 ⊕ L2)x (t) + (el1 ⊗ el2)u (t) ,

where the input vector bl = el1 ⊗ el2 ∈ Rmn determines
the leader vl in G. Based on (6), average controllability
and volumetric control energy are explored in the following
sections to characterize the energy-related controllability of
(L, bl) based on its factor systems (L1, b1) and (L2, b2).

Different from unsigned graphs whose graph Laplacian
is positive semi-definite by default, when considering signed
networks, the graph Laplacian L can be either positive semi-
definite (i.e., G is structurally balanced) or positive definite
(i.e., G is structurally unbalanced) [13]. The subsequent

2A matrix L (G) is symmetry preserving if, for all permutation σ ∈
Aut (G), with the corresponding permutation matrix J , L (G) J = JL (G).
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development will focus on the cases that G is structurally
unbalanced, i.e., eig (L) contains only positive eigenvalues.
If G is structurally balanced, then, as shown in our recent
work [18], a structurally balanced graph can be converted to
an unsigned graph under gauge transformation [13], where
many existing energy-related characterizations (cf. [19] and
[17]) can be immediately applied. In addition, as shown in
[20]–[22], the reduced graph Laplacian can be used, where
the row and column associated with the zero eigenvalue are
removed from the graph Laplacian, so that a structurally
balanced graph can be treated as a structurally unbalanced
graph via reduced Laplacian matrix when deriving Gramian-
based energy metrics. Therefore, we mainly focus on the
energy-related characterizations of structurally unbalanced
graphs.

A. Characterizations of Average Controllability

Before characterizing the average controllability of the
composite system (L, bl) in (6), the following lemma from
[23] is introduced.

Lemma 1. Consider two factor graphs G1 and G2 with n and
m nodes, respectively. Given the Cartesian product graph
G = G1 � G2, the graph Laplacian L (G) takes the form of
L = L1⊕L2 = L1⊗Im+In⊗L2, where L1 and L2 are the
graph Laplacian of G1 and G2, respectively. The eigenvalues
λk and eigenvectors uk of L are defined as λk = µi+ηj and
uk = ϑi⊗wj for k = 1, . . .mn, where (µi, ϑi), i = 1, . . . , n,
and (ηj , wj), j = 1, . . .m, represent the eigenpairs of L1

and L2, respectively.

Lemma 1 shows how the eigenpairs of L can be con-
structed from the eigenpairs of L1 and L2. Based on Lemma
1, the following theorem characterizes the average controlla-
bility of (L, bl). To better explain the idea, let ϑ = [ϑ1· · ·ϑn]
and w = [w1· · ·wm] denote the orthogonal eigenvector
matrices of L1 and L2, respectively.

Theorem 1. Provided two factor systems (L (G1) , b1) and
(L (G2) , b2), the average controllability of the composite
system (L (G1 � G2) , bl) in (6) can be characterized as

tr (W) =

n∑
i=1

m∑
j=1

1

2 (µi + ηj)
ϑ2l1,iw

2
l2,j , (7)

where W is the controllability Gramian of (L, bl), and µi
for i = 1, . . . , n and ηj for j = 1, . . .m being the spectra of
L1 and L2, respectively, and ϑl1,: and wl2,: being l1th and
l2th row of the eigenvector matrices ϑ and w, respectively,
determined by the leaders l1 and l2.

Proof: Consider the composite system (L, bl). Since
L is symmetric, it can be written as L = UΛUT ∈
Rmn×mn, where Λ = diag {λ1, . . . , λmn} ∈ Rmn×mn
is a diagonal matrix containing the eigenvalues of L and
U =

[
u1 · · · umn

]
∈ Rmn×mn is the orthogonal

eigenvector matrix of L. Based on (6) and using the fact that
e−Lτ = e−UΛU

T τ = Ue−ΛτUT , the controllability Gramian

can be written as

W =

∞̂

0

e−Lτ blb
T
l e
−Lτdτ = UΓUT , (8)

where

Γ =

∞̂

0

e−ΛτUT blb
T
l Ue

−Λτdτ. (9)

From (9), the ijth entry of Γ is

Γi,j =

∞̂

0

e−λiτ−λjτul,iul,jdτ =
1

λi + λj
ul,iul,j , (10)

where ul,i and ul,j are the lith and ljth entries of U ,
respectively.

Since the trace is invariant under cyclic permutations, from
(8), the average controllability of (L, bl) is

tr (W) = tr
(
UΓUT

)
= tr

(
ΓUTU

)
. (11)

Substituting (10) into (11) and using Lemma 1,

tr (W) = tr (Γ )

=

mn∑
k=1

1

2λk
u2l,k

=

n∑
i=1

m∑
j=1

1

2 (µi + ηj)
ϑ2l1,iw

2
l2,j , (12)

where ϑl1,: and wl2,: are the l1th and l2th row of the
eigenvector matrices ϑ and w, respectively, corresponding
to the leader node vl1 and vl2 .

A key observation from Theorem 1 is that, for a Cartesian
product composite graph with a single leader, the average
controllability can be inferred from the eigenvalues of the
factor graph Laplacian and the associated rows of the eigen-
vector matrices corresponding to the leaders. In other words,
the average controllability of a complex large-scale network
can be analyzed based on its relatively simple factor systems.
To further clarity, suppose a composite graph Laplacian L has
a dimension of mn ×mn with its factor graph Laplacians
L1 and L2 of size n × n and m ×m. Instead of analyzing
L of large size mn, Theorem 1 provides a practical means
to characterize tr (W) only based on the eigenvalues and
eigenvectors of L1 and L2. Thus, offering a bottom up
approach to reveal the properties of a global system from
its local systems.

Based on the single leader case in Theorem 1, the follow-
ing theorem considers multi-leader cases.

Theorem 2. Consider two factor systems (L (G1) , B1) and
(L (G2) , B2), where G1 has n nodes with p leaders and G2
has m nodes with q leaders, i.e., B1 =

[
el11 · · · el1p

]
∈

Rn×p and B2 =
[
el21 · · · el2q

]
∈ Rm×q where the

basis vector ei, i ∈
{
l11, . . . , l

1
p

}
, and ej , j ∈

{
l21, . . . , l

2
q

}
,

indicate the leader nodes vi and vj in G1 and G2, respec-
tively. The average controllability of the composite system
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(L (G1 � G2) , B) can be characterized as in (15).

Proof: From (5), B = B1⊗B2 =
[
el1 · · · elpq

]
∈

Rnm×pq . Let K = {l1, . . . , lpq} be the leader indices of
G. Replacing bl in (8) by B, the controllability Gramian of
(L (G) , B) is given by

W =

∞̂

0

e−LτBBT e−Lτdτ = UΓUT , (13)

where Γ =
´∞
0
e−ΛτUTBBTUe−Λτdτ with Γ ∈ Rmn×mn

and U ∈ Rmn×mn as defined in (9). From (11) and (13), the
average controllability of (L (G) , B) can be written as

tr (W) = tr (Γ )

=

ˆ ∞
0

e−2λ1τ
∑
k∈K

u2k,1 + · · ·+ e−2λmnτ
∑
k∈K

u2k,mndτ

(14)
where ui,j represents the ijth entry of U. Since´∞
0
e−2λiτdτ = 1

2λi
, (14) can be further simplified into

tr (W) =
∑
k∈K

mn∑
i=1

1

2λi
u2k,i.

Using Lemma 1,

tr (W) =

p∑
k=1

q∑
l=1

n∑
i=1

m∑
j=1

1

2 (µi + ηj)
ϑ2l1k,i

w2
l2l ,j

. (15)

where ϑl1k,:,(k = 1, 2, · · · , p) and wl2l ,:,(l = 1, 2, · · · , q) are
the l1kth and l2l th rows of the eigenvector matrices of G1 and
G2, i.e., ϑ and w respectively, corresponding to the leader
node vl1k and vl2l .

Following similar discussion, Theorem 2 indicates that, for
a Cartesian product composite system with multiple leaders,
its average controllability can also be inferred from the eigen-
values of the factor graph Laplacians and the associated rows
of the eigenvector matrices corresponding to the leaders.

B. Characterizations of Volumetric Control Energy

This section characterizes the volumetric control energy
of the composite system (L, bl) based on its factor systems
(L1, b1) and (L2, b2).

Theorem 3. Consider two factor systems (L (G1) , b1)
and (L (G2) , b2) and its corresponding composite system
(L (G1 � G2) , bl) in (6), where G1 has n nodes and G2 has
m nodes. The volumetric control energy log detW of the
composite system can be characterized as

log detW = m log detW1 + n log detW2 + c,

where W , W1, and W2 are controllability Gramians of
the systems (L, bl), (L1, b1), and (L2, b2), respectively, and
c = log detΓ − m log detΓ 1 − n log detΓ 2 is a constant
determined by eig (L1) and eig (L2).

Proof: From (8), the volumetric control energy of (L, bl)

can be written as

log detW = log
(
detU detΓ detUT

)
= log detΓ, (16)

where detU detUT = 1 is used since U is an orthogonal
matrix. From (10), Γ can be rewritten as Γ = UΓU , where
U = diag {ul,1, ul,2, . . . , ul,mn} and Γ =

[
Γ ij
]
∈ Rmn×mn

with Γ ij = 1
λi+λj

. Based on Γ , U , and (16),

log detW = log
(
detU detΓ detU

)
= 2

mn∑
i=1

log ul,i + log detΓ . (17)

Expressions, similar to (17), can be obtained for factor
systems (L1, b1) and (L2, b2) as

log detW1 = log det
(
V Γ 1V

)
= 2

n∑
i=1

log ϑl1,i+log detΓ 1

and

log detW2 = log det
(
WΓ 2W

)
= 2

m∑
i=1

logwl2,i+log detΓ 2,

where V = diag {ϑl1,1, ϑl1,2, . . . , ϑl1,n}, Γ 1 ∈ Rn×n with
the ijth entry (

Γ 1

)
ij

=
1

µi + µj

for i, j ∈ {1, . . . , n}, W = diag {wl2,1, wl2,2, . . . , wl2,m},
and Γ 2 ∈ Rm×m with the ijth entry(

Γ 2

)
ij

=
1

ηi + ηj

for i, j ∈ {1, . . . ,m}.

By Lemma 1, U = V ⊗ W , and the fact that
det
(
V ⊗W

)
=
(
detV

)m (
detW

)n
, log detW in (17) can

be written in terms of log detW1 and log detW2 as

log detW = log
(
det
(
V ⊗W

)
detΓ det

(
V ⊗W

))
= log

(
detV

)2m
+ log

(
detW

)2n
+ log detΓ

=2m

n∑
j=1

log ϑl1,j + 2n

m∑
k=1

logwl2,k + log detΓ

=m log detW1 −m log detΓ 1

+ n log detW2 − n log detΓ 2 + log detΓ ,

which completes the proof.

Theorem 3 indicates that the volumetric control energy
of a composite system (L, bl) can be inferred from that
of its factor systems, i.e., log detW1 and log detW2, and
a constant c. Note that Γ1 and Γ2 are defined based on
eig (L1) and eig (L2), respectively, and, by Lemma 1, Γ also
depends on eig (L1) and eig (L2). As a result, c is a constant
determined by L1 and L2. In addition, since the selection of
leader nodes (i.e., design of b1 and b2) does not affect L1

and L2, Theorem 3 implies that, if the volumetric control
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energy of the factor systems is individually maximized then
the volumetric control energy of the composite system is
maximum. In addition, any change in the volumetric control
energy of the composite system can be computed precisely
from the change in the volumetric control energy of factor
systems. This provides a means for network design, where lo-
cal factor systems can be individually designed for improved
volumetric control energy of the composite system.

Corollary 1. Consider a composite system (L (G1 � G2) , bl)
constructed by two factor systems (L (G1) , b1) and
(L (G2) , b2). Determining bl (i.e., selecting a leader node
vl in G) to maximize the volumetric control energy of (L, bl)
is equivalent to determining b1 and b2 (i.e., selecting the
leaders vl1 and vl2 in G1 and G2, respectively) such that
the volumetric control energy of (L1, b1) and (L2, b2) are
individually maximized.

Theorem 3 can be extended for a multi-leader case.
Suppose that G1 has p leaders and G2 has q leaders, i.e., B1 =[
el11 · · · el1p

]
∈ Rn×p and B2 =

[
el21 · · · el2q

]
∈

Rm×q . Let (L (G) , B) be the composite system formed by
the Cartesian product of (L (G1) , B1) and (L (G2) , B2),
where B = B1 ⊗ B2 =

[
el1 · · · elpq

]
∈ Rnm×pq .

Denote by K = {l1, . . . , lpq} the leader indices of G.
Following similar analysis as in the proof of Theorem 2,
one has

log detW = log det
(
UΓUT

)
= log detΓ,

where Γ =
´∞
0
e−ΛτUTBBTUe−Λτdτ with

Λ = diag {λ1, . . . , λmn} ∈ Rmn×mn and
U =

[
u1 · · · umn

]
∈ Rmn×mn being the eigenvalue

and eigenvector matrix of L (G), respectively. Substituting
B into (9), the ijth entry of Γ can be written as

Γij =

∑
k∈K uk,iuk,j

λi + λj
, . (18)

where uk, k ∈ K, represents the eigenvector of L corre-
sponding to the leaders. Since any eigenpair (λi, ui) in (18)
can be replaced by the eigenpairs of L1 and L2 using Lemma
1, it is evident that the volumetric control energy log detW
of (L (G) , B) with multiple leaders can be inferred from
its factor systems (i.e., the eigenvalues and the eigenvectors
corresponding to the leaders of L1 and L2, respectively).
However, unlike Theorem 3, derivation of volumetric control
energy in terms of eigenvalues and eigenvectors of L1 and
L2 is more involved when considering a multi-leader case.
Ongoing research aims to characterize how factor systems
individually contribute to the volumetric control energy of
the composite system.

V. CONCLUSION

Energy-related controllability measures, i.e., average con-
trollability and volumetric control energy, are characterized
via Cartesian product in this work. Although the current
work provides an energy-related perspective to characterize
the performance of complex composite networks, this work

is far from complete. For instance, the developed results can
be potentially used for network design or leader selection for
improved energy efficiency. However, the designed network
or selected leaders are not guaranteed to ensure classical
network controllability. Future research will continue to
address these open problems.
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